Complex evolutionary transitions and the significance of c(3)-c(4) intermediate forms of photosynthesis in Molluginaceae.

نویسندگان

  • Pascal-Antoine Christin
  • Tammy L Sage
  • Erika J Edwards
  • R Matthew Ogburn
  • Roxana Khoshravesh
  • Rowan F Sage
چکیده

C(4) photosynthesis is a series of biochemical and structural modifications to C(3) photosynthesis that has evolved numerous times in flowering plants, despite requiring modification of up to hundreds of genes. To study the origin of C(4) photosynthesis, we reconstructed and dated the phylogeny of Molluginaceae, and identified C(4) taxa in the family. Two C(4) species, and three clades with traits intermediate between C(3) and C(4) plants were observed in Molluginaceae. C(3)-C(4) intermediacy evolved at least twice, and in at least one lineage was maintained for several million years. Analyses of the genes for phosphoenolpyruvate carboxylase, a key C(4) enzyme, indicate two independent origins of fully developed C(4) photosynthesis in the past 10 million years, both within what was previously classified as a single species, Mollugo cerviana. The propensity of Molluginaceae to evolve C(3)-C(4) and C(4) photosynthesis is likely due to several traits that acted as developmental enablers. Enlarged bundle sheath cells predisposed some lineages for the evolution of C(3)-C(4) intermediacy and the C(4) biochemistry emerged via co-option of photorespiratory recycling in C(3)-C(4) intermediates. These evolutionarily stable transitional stages likely increased the evolvability of C(4) photosynthesis under selection environments brought on by climate and atmospheric change in recent geological time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple photosynthetic transitions, polyploidy, and lateral gene transfer in the grass subtribe Neurachninae

The Neurachninae is the only grass lineage known to contain C(3), C(4), and C(3)-C(4) intermediate species, and as such has been suggested as a model system for studies of photosynthetic pathway evolution in the Poaceae; however, a lack of a robust phylogenetic framework has hindered this possibility. In this study, plastid and nuclear markers were used to reconstruct evolutionary relationships...

متن کامل

The C(4) plant lineages of planet Earth.

Using isotopic screens, phylogenetic assessments, and 45 years of physiological data, it is now possible to identify most of the evolutionary lineages expressing the C(4) photosynthetic pathway. Here, 62 recognizable lineages of C(4) photosynthesis are listed. Thirty-six lineages (60%) occur in the eudicots. Monocots account for 26 lineages, with a minimum of 18 lineages being present in the gr...

متن کامل

Ecological selection pressures for C4 photosynthesis in the grasses

Grasses using the C(4) photosynthetic pathway dominate grasslands and savannahs of warm regions, and account for half of the species in this ecologically and economically important plant family. The C(4) pathway increases the potential for high rates of photosynthesis, particularly at high irradiance, and raises water-use efficiency compared with the C(3) type. It is therefore classically viewe...

متن کامل

From 4'-Hydroxy-2,2':6',2''-Terpyridine Complex of Chromium(III) towards Cr2O3 Nanoparticles: Effects of the Calcination Temperature on the Particle Size and Morphology

A new chromium(III) complex containing 4ʹ-hydroxy-2,2ʹ:6ʹ,2ʺ-terpyridine (tpyOH) has been prepared by the reaction of CrCl3. 6H2O with tpyOH in the presence of metallic zinc to afford the new complex [CrCl3(tpyOH)] (1). The complex 1 was used as a suitable precursor for the preparation of Cr2O3 nanoparticles by the simple calcination method at three different annealed temperatures of 400, 600, ...

متن کامل

Evolution of C4 plants: a new hypothesis for an interaction of CO2 and water relations mediated by plant hydraulics.

C(4) photosynthesis has evolved more than 60 times as a carbon-concentrating mechanism to augment the ancestral C(3) photosynthetic pathway. The rate and the efficiency of photosynthesis are greater in the C(4) than C(3) type under atmospheric CO(2) depletion, high light and temperature, suggesting these factors as important selective agents. This hypothesis is consistent with comparative analy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Evolution; international journal of organic evolution

دوره 65 3  شماره 

صفحات  -

تاریخ انتشار 2011